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:-?j with literature data. Fracture mirror measurements indic4dted that shrouds
: failed at stresses approximately three times less than bend specimens.
o Probable causes for this were gross machining defects, /size effects, and
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I. INTRODUCTION

The work reported here is part of a program, "MMET, High Temperature Turbine Nozzle
for 10-kW Power Unit," sponsored by the Mobility Equipment Research and Development Command
(MERADCOM), Fort Belvoir, Virginia, with the engine testing and development being conducted
by Solar Turbines International, San Diego, California. The objective of the program is
to develop manufacturing methods for ceramic nozzle vanes. AMMRC is providing consulting
advice and characterization of ceramic candidate materials.

Failure analysis is an important part of any such program. When material failures
occur, it is essential to determine what caused them, i.e., improper design, uncontrolled
testing conditions, or materials not meeting specifications as to quality, surface finish,
or dimensional tolerances. The data base thus generated is required to set specifications
and quality control standards, and also for the design of similar components in future
systems.

The reaction-bonded silicon nitride (RBSN) shrouds examined in this study were fur-
nished to AMMRC by Solar after engine rig testing at their facility. Details of the engine
testing are given in a report recently published by Solar.! The failure analysis work was
conducted at AMMRC.

I1. EXPERIMENTAL PROCEDURES
A. Engine Rig Testing

As indicated in the Introduction, details of testing of the shrouds appear in another
report.! Consequently, only a brief summary of the results is presented here.

The shrouds that were tested were obtained from a commercial vendor.* They were fab-
ricated by machining silicon powder compacts to the desired shape, and nitriding the result-
ing components to convert them to RBSN. Finish machining was minimal. Characterization
data on the material appears in section III.

Most of the shrouds were tested in an engine simulator test rig. The component identi-
fication numbers that we have used are the ones given by Solar.! An example of a typical
designation follows:

1-A £ (1

f
Design | [ Test

Configuration Number

| i 1
f=Forward Shroud r=Rear Shroud

The shrouds labeled 1-A, 1-B, 1-D, and 2-C were tested in the engine simulator test
rig. Testing consisted of up to 4 hours steady-state operation at a turbine inlet temper-
ature (TIT) of 927°C (1700°F) followed by up to 500 thermal shock cycles for shrouds that
survived the steady-state test. The thermal shock cycle for the rear shroud involved heat-
ing from 677°C (1250°F) to 1066°C (1950°F) in 30 seconds followed by cooling to the starting
temperature in 30 seconds. The cycle was the same for the forward shroud except that the
minimum temperature was 538°C (1000°F) and the maximum was 882°C (1620°F).

*NC-350 Reaction-Bonded Silicon Nitride, Norton Co., Worcester, Massachusetts

1. NAPIER, J. C,, METCALFE, A. G., and DUFFY, T. E. Application of Ceramic Nozzles to 10-kW Engine. Solar Turbine International,
Report 8.0, 6-4375-7, 1979. (AD-A081-184)
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;fﬁ The shroud designated 4-Er (7) was tested in the engine test rig in the configuration

. illustrated in Figure 1. Figure la is a rear view of the assembly with the rear shroud

- in place, and Figure 1lb is the same view with the rear shroud removed. In this test, the

L forward shroud was siliconized silicon carbide and the vanes were hot-pressed silicon ni-

Fﬁ ti.de. The testing included 19 stop/start cycles and the maximum TIT at full load was
904°C (1660°F). A summary of the testing follows:

Operating Condition Time at Load (hr)
Calibration 5
50% Load 24
0% Load ' 4
100% Load 10.5
75% Load 6.5
Total 50

B. Fabrication of Bend Test Specimens

Bend test specimens were machined from the engine-tested shrouds. The bend bars were
rectangular parallelepipeds measuring 2.2 x 2.8 x 50.9 mm. These dimensions were chosen
to give specimens sufficiently large for testing while at the same time maximizing the
number obtainable from each component. The orientations of the bend specimens with respect
to the shroud were similarly selected to maximize the number obtainable from each shroud.
Machining of the bend bar surfaces and chamfering of their edges were done according to
the procedure described by Quinn.? That procedure involved machining with either a 220-
or 280-grit diamond wheel such that the striations were parallel to the long axis of the
bend specimen. The final finish removal rate was 1.5 x 10”° mm per pass. The four long
edges were chamfered at 45° to a depth of 0.15 mm.

The bend specimens were tested at room temperature in four-point loading with inner
_ and outer spans of 15.2 and 30.4 mm. The crosshead speed used was 0.05 mm/min. The bend
N specimens were long enough so that on occasion two breaks per specimen were possible. In
such cases, care was taken to insure that the previously stressed portion of the sample
was not reinserted into the inner gauge length.

r C. Fracture Analysis

= Fracture surfaces of all shrouds and bend bars were examined carefully both visually
and by optical microscopy. Many of the fracture surfaces were further examined by scanning
electron microscopy with emphasis on the identification of fracture origins and critical
defects.

For cases in which mirrors were clearly defined, fracture mirror radii were measured
with a reticular lens on a binocular microscope. Flaw sizes were determined from measure-
ments on scanning electron photomicrographs of fracture surfaces of bend specimens.

2. QUINN, G. D. Cheracterization of Ceramic Turbines After Long-Term Environmental Exposure. Army Materials and Mechanics Research
Center, AMMRC TR 80-15, April 1980.
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III. RESULTS

A. Shroud Testing

The engine simulator test rig results are summarized in Table 1.! As seen in that
table, all failures, except one (1-D), were associated with rig problems of the sort to
be expected in such preliminary testing. Analysis of such failures is nevertheless in-
structive in establishing sources and mechanisms of failure.

Figures 2 through 6 are photographs of the RBSN shrouds as they appeared after testing
in the engine simulator rig. One shroud (1-Ar, Figure 2) survived intact with the remain-
der showing behavior ranging from subcritical cracking to catastrophic failure.

Figures 7 through 10 are drawings of the failed shrouds detailing the cracking patterns
that were observed in them. All of these figures are rear views of forward shrouds with
the vane indents omitted for clarity. As indicated, each piece of a shroud was numbered
and locations where cracks started or ended were designated with letters. This system was
followed consistently in labeling subsequent detailed pictures. For example, the desig-
nation "1-Af (1) al" refers to location "a" on piece No. 1 of shroud 1-Af (1).

Fracture origins (labeled "o") and crack propagation directions (indicated by arrows)
were identified insofar as possible by examination of fracture surfaces visually and by
low-power optical mici'oscopy.a'7 The arrows were omitted when the crack propagation direc-
tion was uncertain. Fracture initiated at the surface on the inside forward corner of each

Table 1. RESULTS OF TESTING OF CERAMIC NOZZLES IN ENGINE SIMULATOR TEST RIG (Ref. 1)

Nozzle Test Sequence Results
1-A 2 hours steady state at 927°C Forward shroud fractured. In-
(1700°F) TIT. advertent sea salt ingestion

caused corrosion on seal plate
and interference that led to

failure.
1-B 4 hours steady state at 927°C . Forward shroud fractured in
(1700°F) TIT and “167 thermal thermal shock test. Over-
shock cycles. heating of diffuser housing
caused misfit that overstressed
shroud.
2-C 4 hours steady state at 927°C Forward shroud fractured. Cause
(1700°F) TIT followed by flame- appeared to be thermal binding
out with cold air supply on. at joint between combustor can

and outer shroud retaining ring
and/or thermal stress.

1-D 4 hours steady state at 927°C Subcritical crack in forward
(1700°F) TIT and 500 thermal shroud apparently caused by
shock cycles. thermal stress.

3. FRECHETTE, V. D. The Fractology of Glass in Introduction to Glass Science. L. D. Pye, H. J. Stevens, and W. C. LaCourse, ed
Plenum Press, New York, 1978, p. 227-231.

4. FRECHETTE, V. D. Fractography and Quality Assurance of Glass and Ceramics in Quality Assurance in the Ceramic Industry. V. D. Frechette,
L. D. Pye, snd J. S. Reed, ed., Plenum Press, New York, 1978, p. 227-236.

S. RICE, R. W. Frecture Topography of Ceramics in Surfaces and Interfaces of Glass and Ceramics. V. D. Frechette, W. C. LaCourse, and
V. L. Burdick, ed., Plenum Press, New York, 1974, p. 439472,

6. RICE, R. W,, MECHOLSKY, ). J., FREIMAN, S. W., and MOREY, S. M. Failure Causing Defects in Ceramics: What NDE Should Find.
Naval Research Laboratory, NRL Memorandum Report 4075, 1979,

7. MECHOLSKY, J. 1., FREIMAN, S. W., and RICE, R. W. Fracture Surface Analysis of Ceramics. ). Mater. Sci., v. 11, 1976, p. 1310-1319.
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shroud with the exception of one case, shroud 1-Bf (2) (Figure 8), where an origin was found
at a bolt hole.

Shroud 4-Er (7), which failed during engine rig testing, is shown in Figures 11 and
12. During testing of that shroud, combustion problems occurred which were attributed to
compressor surge.! When the rig was disassembled for examination after 32 hours, the crack
"g-h" (Figure 12) was discovered. Piece No. 5 remained in place, however, and testing was
continued. After 50 hours, the exhaust scroll was found to be partially collapsed, the
additional cracking in the rear shroud (Figure 12) was observed, and the test was termi-
nated. The cause of failure at that point was believed to be excessive stress generated
by buckling of the exhaust scroll.

Figures 13 through 29 are optical macrographs and scanning electron photomicrographs
of shroud fracture surfaces illustrating various features that were observed.

The fracture surfaces shown in Figure 13a and b exhibit the classical features found
on such surfaces,3’“ i.e., a smooth "mirror" region near the origin (point '"a'" in Figure 13b),
a coarser '"mist" region beyond the mirror, and the coarse 'hackle'" region beyond the mist.
These features are particularly well-defined in Figure l6a, and the corresponding regions
labeled for reference. Note that the "river" patterns in the hackle region may be traced
back to the fracture origin which, as already mentioned, is at an inside corner of the shroud.
Figure 14 shows another part of shroud 1-Af (1); the hackle lines at the left indicate that
the crack emerged (rather than initiated) at that location.

Figures 15 through 19 show various features of the fracture of shroud 1-Bf (2). Fig-
ure 15 illustrates one problem in post-mortem fracture analysis; the chip in the lower
corner in (a) is not duplicated in (b) suggesting that it occurred in handling after the
fracture event. The markings in Figures 15 through 19 again indicate that fracture initiated
at inside corners. The large hackle marks in Figure 16 suggest catastrophic failure and
Figure 17 shows a large pore near the fracture origin. Also present in the same region
are large surface gouges that are probably left over from machining of the component. Fig-
ures 18 and 19 show surfaces near the origin of the only fracture that started at a hole.
Prominent in Figure 18 are Wallner lines, the semicircular markings some distance away from
location "i". These features are always concave toward the fracture origin.3:* Figure 19
shows a possible chip or machining defect (near "i') at which fracture could have originated.

Figures 20 through 24 show fracture surfaces on shroud 2-Cf (4). The chip near the
lower left corner in Figure 20b probably occurred during handling, and fracture again ini-
tiated at the inside corner. Evident in Figure 21 is a large gouge on the edge of the
component near the fracture origin as well as a large inclusion in the same region. Fracture
surfaces near origin 'c" are shown in Figure 22 and 23. The groove on the corner near 'c"
(Figure 23) may have caused failure. The region near "d" in which a subcritical crack orig-
inated is shown in Figure 24. Note the especially small fracture mirror associated with
this origin. Figure 25 shows clearly the type of large machining striations that were found
in several instances.

The results of fractographic examination of shroud 4-Er (7) are shown in Figures 26
through 29. This was the only shroud in which internal fracture origins were observed.
Figure 26 shows the origin for the fracture that occurred near point 'g'", shown in Figure
12, after 33 hours. The Wallner lines and hackle markings clearly indicate an internal
origin. The fracture origin near '"b" is shown in Figures 26 and 27. Interpretation of
this fracture was more difficult than in previous cases. Examination of the fracture sur-
faces, however, suggests that the porous area near '"y'" (Figure 28a and c) was the fracturec-
initiating defect. The crack seen in Figure 28b and d appears to have initiated near "y"




supporting the above suggestion. Figure 29 shows the region near a third possible origin
in shroud 4-Er (7). Fracture may have initiated near the chip in Figure 29b, but the hackle
lines in Figure 29a ‘indicated that the origin may have been to the right of the point indi-
cated by the arrow.

B. Mechanical Testing

Table 2 summarizes the data from bend test specimens machined from the six shrouds
that had been engine tested. The density data given in Table 2 were computed from measure-
ments of the masses and dimensions of the bend bars. Density data were not obtained for
shroud 4-Er (7). Density varied little from one shroud to another, and the low standard
deviations for the individual shroud data indicate that the material was uniform throughout.

All the specimens, with the exception of five from shroud 4-Er (7), were tested with

as-machined surfaces. As noted in Table 2, fracture origins were, when possible, identified
as either machining or '"native" (material) defects. In the remaining cases, failure resulted

Table 2. . COLLECTED FRACTURE DATA FROM MECHANICAL TESTING OF SPECIMENS MACHINED FROM RBSN SHROUDS

Stress Stress Stress
Shroud (MPa)  Source Location Shroud (MPa)  Source Location Shroud {MPa)  Source Location
1-Af() 208 MIN c 1-Df5) 126 N S 4rn 19 M S
P2,80%10 211 N S P24 L10 185 MIN c {Machined 202 ] S
kg/ 218 N S kgim 19 M 1 Surfaces) . u U
9 N c 200 M ] Fr23 MIN c
27 N S 20 M S 238 M c
260 N S 210 N e 264 v c
210 miN S 216 M [ 249 N c
20 MN S 13\ M C 214 ] u
274 u ] 24 U v 280 ] c
25 N S 232 N S 289 M c
295 N S 234 MIN S 297 M c
311 v s a7 MIN c 299 u c
343 v u 24 N S 299 M S
3% ] ] 246 N 3 3R u c
241 N S 306 u c
1-8(2) n M c 251 U S 314 N |
£:2,470 $10 181 MIN 3 251 N S E)Y u s
o/ 204 M s 255 MIN S 326 u S
21 N c 284 M ¢ 328 M c
251 M [ 21 N S 384 M c
263 M (" 299 MIN S 376 ] ]
268 M ¢ 305 U c mn M c
320 U ] 307 N S
n 1] S 309 M c &Erln n N S
(As-Received 8 N U
2-CHd) . - S 1-Ar()) 163 M ¢ Surfaces) 95 N S
M“.got 10 . - - £2,520210 bi3) MIN c 101 N cis
] 3 N s kg/m3 b5 )] N ] 124 N S
an ] S 238 M c
n N | 262 M ¢
286 N | 266 ] c
9 N | 269 M ¢
298 M c 282 N c
29 M S 8 U ¢
321 1] c 29 N S
345 U S 305 M c
306 N |
307 N |
363 N S
364 u ]
400 M |

*Specimen failed from large crack at undetermined low stress.
Key to symbols: C, Corner: |, Interior; M Machining Defect:
N, Material Defect; S, Surface; U, Unknow
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either from a combination of the two or from an unidentifiable source. Note also in Table 2
that the bend bar fractures generally originated at surfaces ana internal origins were
found in only a few instances.

Figures 30 through 33 show examples of each type of identifiable flaw observed at
fracture origins in bend specimens. Native material defects were generally porous areas
as shown in Figure 30. Gouges from machining similar to the ones shown in Figure 31 and
32 were associated with failures attributed to machining defects. The machining defect
shown in Figure 32 was associated with porosity, and it was thus categorized as "mixed".
An example of one of the few defects (a subsurface pore) causing failure to originate
internally is given ‘in Figure 33.

IV. DISCUSSION OF RESULTS
A. Shroud Testing

The three shrouds (1-A, 1-B, and 2-C) that failed completely during .testing in the
engine simulator rig showed similar behavior. Failure occurred typically in tension at
the inner surface with the origins being more or less diametrically opposite each other.
Such behavior would be expected of a hoop-shaped specimen; as soon as one crack opened,
the tensile stress would be highest diametrically opposite to it.

In the example shown in Figure 9, the second crack may have originated at a large
defect, rather than at the maximum stress location, or failure could have originated simul-
taneously at locations "a' and "c'". The latter seems more plausible since the subcritical
crack at "d" is diametrically opposite a point midway between 'a" and "c'. It is impossible
to deduce unequivocally from the fracture patterns in Figures 7 through 9 which fracture
occurred first. For the case in which failure was catastrophic, however, it appears that
the first crack initiated at "a'" (Figure 8). That crack has more branches than the one
starting at "e", suggesting that the stress was higher at "a",% and the branch traveling
circumferentially counterclockwise traveled much further than the intersecting crack from
location "e'". The crack starting at "e" may also have traveled slightly farther before
branchi.g, again indicating that the failure stress may have been lower at that point.®
It may also be noted that the catastrophic cracking in shroud 1-Bf (2) (Figure 8) indicates
that it failed at a higher stress level than the other two (Figures 7 and 9).

The fracture behavior of shroud 4-Er (7) which endured 50 hours of engine rig testing
was markedly different than that described above. Crack initiation sites (if any) and
propagation directions in the vicinity of locations "c' and "d" in Figure 12 were impossible
to establish with certainty. The two identifiable fracture origins both appeared to be
internal ones. It is likely that those failures resulted from thermal stress during heat-
ing; such a situation would induce compressive stresses on the outside, and corresponding
corresponding tensile stresses on the inside of the part.

B. Mechanical Testing

Although the shrouds were tested in an oxidizing environment for up to 50 hours at
temperatures (900°C) at which internal oxidation may have degraded properties® none of
the failures appear to have been corrosion-related. In support of this conclusion are
the data summarized in Figure 34 which shows the mean strength values for each set of bend
specimens (except for the five tested with as-received surfaces) as well as baseline data

8. Ceramic Gas Turbine Engine Demonstration Program. AiResearch Manufacturing Co., Report 76-212188(14), 1979.
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obtained by Quinn? for specimens machined from flat billets of virgin material. Our spec-
imens were prepared and tested in the same manner as Quinn's. His material, however, was
furnished by the manufacturer in the form of simple disks (not component shapes) 190-mm
diameter x 4.5-mm thick. The number (n) given in Figure 34 for each shroud is the total
number of breaks obtained on specimens from that particular component. Also shown are
value. of the Weibull modulus (m),?® and standard deviation for each set of results.

The significance of the difference between the mean strength for each shroud and the
baseline value was evaluated by means of a two-tailed t test.?® In only one case (shroud
1-Df (5)) was the difference significant (highly significant at the 99.9% level); other
differences were statistically insignificant (<95% to <50%). "..ese results are encour-
aging, for they indicate that material can be produced in a complex shape with strength
equal to that of a simpler form.

Figures 35 and 36 show the bend test data plotted according to a normal distribution.!?®
It is evident that they fit such a distribution wel!, justifying the use of statistical
comparative tests that assume such a distribution. It is also noteworthy that there is

no apparent "cutoff' at the lower stress levels, as might be expected if there were a min-
imum "proof" strength.

Figure 37 shows the data plotted according to the Weibull distribution which one would
expect to obtain from theoretical considerations.® Again the fit is satisfactory. Also
given in Figure 37 are Weibull modulus values obtained by both least squares (LS)'° and
maximum likelihood estimator (MLE)'! techniques. The advantage of the MLE technique is
that it gives error bounds while the LS technique does not.

Table 3 summarizes the calculated results of statistical parameters for the data

plotted in Figures 35 through 37. Note that the modulus value of 5.6 obtained by the LS
technique is well within the MLE bounds of m = 4.4 to 6.0 at the 90% confidence level.

Table 3. STATISTICAL PARAMETERS OF FRACTURE ANALYSIS

Distribution Parameter Value
Normal RMS Error 0.020
Mean Stress (MPa) 270
90% Confidence Limits 261-279
Standard Deviation (MPa) 54
90% Confidence Limits 48-61
Weibull RMS Error 0.028
(MLE Technique) Weibu)l Slope (m) 5.41
90% Confidence Limits 4.68-6.11
Characteristic Value (MPa) 292
90% Confidence Limits 282-302

9. WEIBULL, W. A, Suatistical Distribution Function of Wide Applicability. ). Appl. Mech., v. 18, no. 3, 1951, p. 293-297.
10. STEELE, R. G. D, and TORRIE, J. H. Principles and Procedures of Statistics. McGraw-Hill, New York, 1960.

11. MASON, D., NEAL, D., and LENOE, E. Statistical Data Eveluation Procedures. Army Materials and Mechanics Rescarch Center,
Technical Report (to be published).

e ot st - s




TP

Of some interest in further defining fracture mechanisms is whether or not significant
differences existed among bend specimen fractures originatiag from the different defect
types identified by microscopic analysis. For this purpose, the data in Table 2 was sepa-
rated into groups corresponding respectively to failures from material and machining defects.
Shown in Table 2 are numerous cases in which the source of failure could not be identified
unequivocally. In view of this difficulty, the data were categorized in two different
ways for statistical testirg of the hypothesis that mechining damage reduced material
strength.

Although it is recognized that the procedure used tc categorize defects may be
biased, such categorization is still felt to be useful.

Table 4 summarizes the results of that statistical analysis. The column labeled "All
Specimens' contains all of the data categorized according to failures associated with ma-
chining damage (coded M or M/N in Table 2) or failures ascribed to material defects or
unknown causes. The column labeled "Selected Data" includes data only on failures unequiv-
ocally caused by machining or material defects (coded M and N in Table 2). While compar-
ison of the results categorized in the first way indicates that machining damage recduces
strength at a highly significant level, the second comparison indicates no significant
difference. While the mean streagths associated with machining damage are lower than those
associated with material defects for the first of the data treatments, it must be cencluded
that the machining done in preparation of the bend test specimens had minimal effect on
strength.

Table 4. EFFECT OF MACHINING DAMAGE ON STRENGTH OF RBSN BEND TEST
SPECIMENS AS DETERMINED FROM A SINGLE-TAILED t TEST

Parameter A1l Specimens Selected Data

Failure

Origin Machining Material Machining Material
No. of Tests 39 55 29 29
Mean Fracture 256 279 263 262
Stress (MPa)
Standard +55 +54 +59 +45
Deviation (MPa)
t 2.109 0.075
Level of >97.5<99" Insignificant
Significance

C. Fracture Mechanics

Fracture surfaces of most fine-grained materials exhibit certain characteristic
features: mirror, mist, and hackle.>’* The fracture stress, of, is empirically related

to the mirror radius by:

1/2
gf = A/r (1)

where A is a constant.’»!? Mirror radii were measured for 35 of the 72 fracture specimens
(some of the mirrors were too ill-defined to measure) by use of a reticular lens on a bin-
ocular microscope. The value taken for the radius was the average of measurements in sov-

eral directions of the distance from the fracture source to the mirror-mist boundarv.

12. KIRCHNER, H. P, and KIRCHNER, J. W. Fracture Mechanics of Fracture Mirrors. ). Am. Ceram. Soc., v. 62, no. 34, 1979, p. 198-202.
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Figure 38 is a plot of fracture stress versus mirror radius. A least squares analysis of

the data ylelded a value of A = 3.92 MN/m3/2, This value 1s in reasonable agreement with

the value of 4.2 MN/m3/2 reported by Kirchner et al.}?® for a different grade of RBSN, and

also with that of 3.19 MN/m®/2 reported by Larsen and Walther* for the same type of mate-
rial (NC-350) investigated in this study.

An important material parameter, the critical stress intensity factqr, can be obtained
by means of fractographic analysis. This factor can be expresrsed as follows:

_ 1/2

Kpe = Yoge (2)
where Y is a geometric constant related to the flaw shape and loading mcde, and ¢ is the
flaw size.

For the case of a shallow, semicircular surface crack in a beam in bending, Y will
vary along the crack front perighery, ranging in value from 1.35 at the surface to 1.16
at the deepest interior point.!® The selection of a value of Y to use in estimating Kic
must consider the fact that our values for flaw sizes (c) are averages of measurements
in several directions. Acknowledging this, we selected an average value of Y = 1.26 as
did Mecholsky et al.”*

A detailed characterization of the flaws was done ;or 18 fracture specimens (all from
shroud 4-Er (7)) and a value of Kio = 1.76 2 0.25 MN/m*/ %2 was obtained from a least-squares
analysis of a plot of stress versus flaw size (Figure 39). This value compares favorably
to others obtained on the same mate71a1 b{ various techniques, i.e., 2.06 MN/m®/? by double
torsion,*>® and 1.73 - 2.07 MN/m3/? (1€) and 1.87 MN/m? 2(17) by means of controlled
flaw experiments,

D. Shroud Failure

Of considerable interest is the estimation of stress levels which caused failure of
the shrouds. Such estimates can be made using Equation (1) from mirror measurements on
fracture surfaces, given that the constant, A, has already been determined from the bend
bar data. Although tiie bend tests were conducted at room temperature and the components
failed at elevated temperatures (1100°C or less), it seems unlikely that the value of A
would vary much over that temperature range. It is known that KIc, for the material that
was tested, is essentially constant in this temperature regime,'”’® and it has also been
shown that K[c is proportional to A.’

*For the sake of clarity, it should be noted that Mecholsky et 11.7 defined wieir geometric constant somewhat differently than we have.

13. KIRCHNER, H. P., GRUVER, R. W., and SOTTER, W. A. Fracture Stress - Mirror Size Relations for Polycrystalline Ceramics. Phil. Mag.,
v. 33, no. §, 1976, p. 775-780.

14. LARSEN, D. C., and WALTHER, G. C. Property Screening and Evaluation of Ceramic Turbine Engine Materials. 11T Research Institute,
IITRI-D6614-1TR-30, Interim Technical Report S, 1978.

15. SMITH, F. W., EMERY, A. F,, and KOBAYASHI, A. S. Stress Intensity Factors for Semicircular Cracks. Trans. ASME, Series E,
v. 89, 1967, p. 953-959.

16. LARSEN, D. C., and WALTHER, G. C. Property Screening and Evaluation of Ceramic Turbine Engine Materials. 11T Research Institute,
NIITRI-D6114-ITR, Interim Technical Report 6, 1978,

17. WILLS, R. R.,, MENDIRATTA, M. G., and PETROVIC, 1. J. Controlled Surface Flaw Initiated Fracture in Reaction-Bonded Si N4
J. Mater. Sci., v. 11, 1976, p. 1330-1334,

18. LARSEN, D. C. Property Screening and Evaluation of Ceramic Turbine Engine Materials. 1IT Research Institute, IITRI-D6114-ITR42,
Interim Technical Report 7, 1979.
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Table 5 summarizes the results of fracture mirror measurements (in cases where such
measurements could be made) on failed shrouds, and fracture stresses calculated therefrom.
All of these fractures initiated at surfaces, and it is apparent that the shrouds failed
at much lower stresses than did the bend test specimens. This is consistent with proba-
bilistic theories of strength® which indicate that failure stress is inversely proportional
to surface area and/or volume. Supporting evidence for such an effect was given by Jones
and Rowcliffe'? who found that large rings (60 mm OD) of RBSN failed at significantly lower
stresses than did small rings (30 mm OD). In our case, however, quantitative evaluation
of any such size effect is impossible; information on the load and stress distribution
during engine testing is unavailable.

The calculated fracture stress values in Table 5 agree well with the results in Table o
2 for bend specimens tested with as-received surfaces. In the case of the shrouds, Fig-
ures 13, 15, 17, 21, and 23 show evidence of gross machining defects near fracture origins.
Similar defects were suspected, but not observed clearly at fracture origins in bend bars
with as-received surfaces. On the other hand, it has already been noted that numerous
failures in bend specimens with machined surfaces were related to machining flaws (less
severe that the above-mentioned ones), but statistical testing results were inconclusive
as to whether or not such relatively minor flaws significantly lowered strength. Jones
and Rowcliffe!® similarly noted that their RBSN specimens frequently had machining grooves
at fracture origins. In view of the foregoing discussion it appears that, at some level,
the fracture strength of RBSN will be significantly degraded by the presence of surface
machining flaws.

For shroud 4-Er (7), where internal fracture origins were found, estimates of failure
stresses were impossible. As already indicated, it appears that these failures were caused
by thermal stresses during heating, however, insufficient data exists to estimate quanti-
tatively the magnitude of those stresses.

An additional complicating factor that should be considered is the likelihood of sig-
nificant residual stresses in the components. For example, it was observed that during
the initial cutting of a shroud to machine bend specimens, spontaneous cracks propagated
throughout the piece. This occurred despite care taken to avoid impact or other abuse in
the cutting process. Further evidence of resjidual stresses was that the shroud halves
tended to "'spring together' when the first cut was made through the cross section of one

Table 6. ESTIMATION BY EQUATION 1 OF STRESSES CAUSING COMPONENT FRACTURE

Calculated
Mirror Fracture
Radius Stress
Component Location (mm) (MPa )
1-Af (1)* a 2.36 80 i
1.64 96
1-Bf (2)* a 1.05 120 .
1.03 121
2-Cf (4) a 1.57 98

*Two fracture origins on same component.

19. JONES, R. L., and ROWCLIFFE, D. W. Tensile-Strength Distributions for Silicon Nitride and Silicon Carbide Ceramics. Am. Ceram.
Soc, Bull, v, 58, no. 9, 1979, p. 836-839.
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of the ring-shaped pieces. The net effect of such residual stresses would be to lower the
load-carrying capacity of the shrouds relative to the bend specimens. It is unlikely that
the latter contained residual stresses because such stresses would have caused specimens
to fail during machining.

V. SUMMARY

In summary, it may be concluded that:

1. Reaction-bonded silicon nitride (RBSN) may be fabricated into complex shapes,
i.e., turbine shrouds, having mechanical properties equivalent to those of material produced
in simpler forms.

2. Machining damage minimally reduced the strength of RBSN bend test specimens with
high-quality surfaces. '

3. RBSN shrouds failed at substantially lower stresses than bend test specimens.
Probable causes for this include:
gross machining defects in the shrouds,

b. a size effect which would cause a larger piece (the shroud) to fail at a
lower stress than a smaller one (bend specimen), and

c. residual stresses in the shrouds.
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Figure 1. Rear view of engine test rig with (a) ceramic
shroud in place and (b) with rear shroud removed.
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Figure 2. RBSN forward shrouds after testing in the 10-kW turbo
alternator. (a) and (b) were tested in different runs. The arrows
point to sites where fracture initiated.

@ b

Figure 3. RBSN rear shroud after testing in the 10-kW turbo alternator with
(a) front view and (b) rear view. This part was uncracked.

] ()]

Figure 4. RBSN front shroud after testing in the 10-kW turbo alternator with

(a) complete shroud and (b) detail near subcritical crack. The arrows point to
sites where fracture initiated. The site labeled “s” is the same in each photograph.
The crack shown in (b) was defined by tracing it with a felt-tip pen.
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Figure 5. RBSN forward shroud from 10-kW turbo alternator after Figure 6. Detail of subcritical crack in forward
:' - testing with (a) front view and (b) rear view. Arrow points to loca- shroud 1-Df. The crack was defined by tracing
- tion of subcritical crack. it with a felt-tip pen.

a4l

- ~——— Crack visible on top surface

3 .- - Crack visible on bottom surface

. Crack visible on top surface —uw——  Direction of crack propagation

c . meme- Crack visible on dottom surface
F! —e=—— Direction af crack geopagation

[

Figure 7. Fracture patterns in RBSN forward shroud Figure 8. Fracture patterns in RBSN forward shroud

after testing. The arrows labeled “‘o” indicate sites after testing. The arrows labeled ‘0" indicate sites

where fracture initiated. where fracture initiated. Note area near hole {lower
left) where circumferential cracks meet.
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Figure 9. Fracture patterns in RBSN forward shroud
after testing. The arrows labeled ‘0" indicate sites

where fracture initiated. The line d-g indicates a

subcritical crack.
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—— Crack visible on top surface
-~ Crack visible on bottom surface

Figure 10. Fracture patterns in RBSN forward
shroud after testing. The cracks shown are
subcritical.

Figure 11. RBSN rear shroud after 50 hours
of testing in the 10-kW turbo alternator with
{a) front view and (b) rear view. Arrows indi-
cate regions where fracture originated.

Figure 12. Fracture patterns in RBSN rear shroud
after 50 hours of testing. The arrows labeled “o*’
indicate sites where fracture originated. Crack g-h
was present after 33 hours of testing.
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(a) 1-Af (1) a2

m

(c) 1-Af (1) al (d) 1-Af (1) al

Figure 13. Fracture surfaces near fracture origin “a’ in shroud 1-Af (1). (a) and (b) are photomacrographs of matching
fracture surfaces; (c) and (d) are scanning electron photomicrographs of surface shown in (b). The prominent surface
features in (d) are believed to be cracks emanating from the machining striae evident on the surface {lower left).
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1-Af (1) 3
Figure 14. Photomacrograph of fracture surface near “’c” in shroud 1-Af (1). Hackle
lines visible at left indicate that the crack emerged in that area.
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(b) 1-Bf (2) a5

(c) 1-Bf (2) al (d) 1-Bf (2) a5

o Figure 16. Fracture surfaces near fracture origin “a” in shroud 1-Bf (2). {a) and (b} are photomacrographs of matching
fracture surfaces; (c) and (d) are scanning electron photomicrographs of the same surfaces. The chip evident in the lower
right of (a) and (c) probably occurred in handling.

'9

' 18

‘-

e s o e - -




E
L L.
b .- e e L
L (c) 1-Bf (2) 4
g4
a Figure 16. (a) and (b) are photomacrographs of matching fracture surfaces near fracture origin “e’’ in shroud 1-Bf (2).
(c) and (d) are scanning electron photomicrographs showing appearances of surface respectively close to and away from
the fracture origin.
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’L Figure 17. Scanning electron photomicrographs of fracture surfaces near fracture origin e’ in shroud 1-Bf (2).
Visible in (a) and (b) are machining striae and a chip near “‘e’*. The probable fracture origin, a large pore, is
' visible in (c) and (d). The white area in (d) are probably dust.
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(a) 1-Bf (2) il

(b) 1-Bf (2) i2

Figure 18. Photomacrographs of matching fracture surfaces near
fracture origin “i"’ in shroud 1-Bf (2).
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(c) 1-Bf (2) il

Scanning electron photomicrographs of fracture surfaces near fracture origin i’ in shroud 1-Bf (2).
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(b) 2-Cf (4) al

Figure 20. Photomacrographs of matching fracture surfaces near fracture origin “a” in shroud 2-Cf (4).
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(b) 2-Cf (4) al (c) 2-Cf (4) al

Figure 21. Scanning electron photomicrographs of fracture surfaces near fracture origin *‘a’’ in shroud 2-Cf (4). The
probable fracture origin is the large inclusion evident near the center of (c).
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; Figure 22. Photomacrographs of matching fracture surfaces near fracture origin “c” in shroud 2-Cf {4). In (c) the specimen
t-f,: was rotated to show more clearly the corner surface visible in (a).
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(a) 2-Cf (4) cl (b} 2-Cf (4) 2

Figure 23. Scanning electron photomicrographs of fracture surfaces near
fracture origin “’c”’ in shroud 2-Cf (4).

(a) 2-Cf (4) d1 (b) 2-Cf (4) dl

Figure 24. Fracture surfaces near “d” in shroud 2-Cf (4). (a) is a photo-
macrograph and (b) is a scanning electron photomicrograph.

{a) 2-Cf (4 1 (b 1-8f (2 5

Figure 256. Scanning electron photomicrographs showing machining
striations in shrouds.
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(a 4-Er(7 1 (b) 4-Er(1) 5

Figure 26. Photomacrographs of matching fracture surfaces near *‘g”" in shroud 4-Er (7). This fracture initiated internally.

1a 4-tr(h |

(b 4-ErtH 4 (c) 4-Er(M 1

Figure 27. Fracture surfaces near ‘’b” in shroud 4-Er (7). (a) shows a large area of the fracture surface on piece No. 1;
{b} and (c) show matching fracture surfaces on piece No. 4 and 1, respectively. The large chip evident in (c) is not
visible in (b), indicating that chipping occurred after fracture of the component.
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(a) 4-Er(7) 4 (b) 4-Er(7) 1

. (c) 4-Er(D) 4 (d) 4-Er(7) 1

Figure 28. Scanning electron photomicrographs of fracture surfaces near “b" in shroud 4-Er (7). (a) and
(b) are matching surfaces; (c) and (d) show details at higher magnification. The porous area near 'y’ is
probably the defect that initiated fracture.




J‘ (@ 4-€r(D 3 {b) 4-Er() 3
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Figure 20. Possible fracture origin near ‘/d” in shroud 4-Er (7). (b) is a scanning
electron photomicrograph of the area indicated by the arrow in (a).

. |
Figure 30. Appearance of bend bar from shroud 1-Af (1) after fracture with (a) matching fracture surfaces and (b) scan-
}_.ji ning electron photomicrograph of the fracture origin. Failure originated in the porous region (“‘material defect’’) shown.
-
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t Figure 31. Appearance of bend bar from shroud 1-Bf (2) after fracture. (a) matching fracture surfaces; (b)
L" specimen surface; and (c) scanning electron photomicrograph near fracture origin. This specimen failed from

the machining striation indicated by the arrow in (b).

) 0.5 mm (b) 2 pm
— —

Figure 32. Appearance of bend bar from shroud 1-Af (1) after fracture. (a) Matching
fracture surfaces and (b) scanning electron photomicrograph of the fracture origin. This
specimen failed from a mixed defect, i.e., a machining striation interacting with porosity
as seen in (b).
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Figure 33. Matching fracture surfaces of RBSN bend bar
from shroud 1-Ar (1). The arrow indicates an internal
defect at the fracture origin.
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Figure 34. Results of bend tests conducted on specimens Figure 35. Histogram of bend bar fracture data
machined from RBSN shrouds. The error bars indicate with normal distribution curve overiay.
standard deviations.
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Figure 36. Data from all bend tests plotted according to a normal distribution function.
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- Figure 37. Data from all bend tests plotted according to the Weibull distributior. function.
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